Antimicrobial Resistance and Hormone Degradation

October 14th 2010, MARC-ARS-UNL-UNMC Focus Workshop

Xu Li

Department of Civil Engineering University of Nebraska-Lincoln

Research Focuses

- 1. Fate, transport, and mitigation of antimicrobial resistance genes in agricultural and engineered systems
- 2. Mechanisms of microbial hormone degradation and removal of hormone using bioreactors

Project #1: Antimicrobial Resistance Genes (ARGs) in Lagoons

Objective: Identify environmental factors that correlate with ARG occurrence and mitigation

Lagoons in MARC

Beef lagoons

#4

Environmental Factors in Lagoons

Concentrations of various antimicrobials

Environmental Factors to Test

- 1. Dissolved oxygen
- 2. Disinfection

Project #2: Antimicrobial Resistant Pathogens in Food Crops

Objective: Understand the fate of antimicrobial resistant pathogens in recycled water before and after irrigation on food crops

Project #3: Remove Estradiol from Water using a Bioreactor

Objective: Develop a bioreactor to effectively remove 17β -estradiol from drinking water.

Physicochemical Process

Adsorption

	K	n
E1 alone	4124.8	1.23
E2 alone	5945.7	1.29
E1 (E1+E2)	2543.3	1.08
E2 (E1+E2)	3545.7	1.04

Values of K, n are based on Ce (ug/L), qe (ug/g carbon)

Physicochemical Process

Adsorption

	K	n
E1 alone	4124.8	1.23
E2 alone	5945.7	1.29
E1 (E1+E2)	2543.3	1.08
E2 (E1+E2)	3545.7	1.04

Values of K, n are based on Ce (ug/L), qe (ug/g carbon)

Biological Process

Bacterial Degradation

- 1. Identify estradiol degrading bacteria by isolation and sequencing
- 2. Analyze the structure of the microbial community using pyrosequencing

Time (day)

3. Follow estradiol degrading bacterial population using qPCR

Project #4: Mechanism of Microbial Hormone Degradation

Objective: Elucidate the pathway of microbial hormone degradation

Stenotrophomonas maltophilia

	Fold
Protein Name	changed after E2
	treatment
TesA	+2
TesI	+2
TesB	1

Protein Identification with >90% probability

Research Facilities

Env. Engr. and Collaborators'

Total organic carbon analyzer

Real time PCR thermocycler

Rotary evaporator

Various reactors

- 1. UNL Food Science Pyrosequencing Core Facility
- 2. UNL Beadle Biotechnology Center
- 3. UNL Water Sciences Laboratory

Areas of Collaboration

- 1. Any area that my expertise may help.
- 2. Microbial activities ~ climate change ~ water quality.